二次函數(shù)在高中階段的應(yīng)用范圍
來源:網(wǎng)絡(luò)資源 2009-03-16 13:05:07
在初中教材中,對二次函數(shù)作了較詳細的研究,由于初中學(xué)生基礎(chǔ)薄弱,又受其接受能力的限制,這部份內(nèi)容的學(xué)習(xí)多是機械的,很難從本質(zhì)上加以理解。進入高中以后,尤其是高三復(fù)習(xí)階段,要對他們的基本概念和基本性質(zhì)(圖象以及單調(diào)性、奇偶性、有界性)靈活應(yīng)用,對二次函數(shù)還需再深入學(xué)習(xí)。
一、進一步深入理解函數(shù)概念
初中階段已經(jīng)講述了函數(shù)的定義,進入高中后在學(xué)習(xí)集合的基礎(chǔ)上又學(xué)習(xí)了映射,接著重新學(xué)習(xí)函數(shù)概念,主要是用映射觀點來闡明函數(shù),這時就可以用學(xué)生已經(jīng)有一定了解的函數(shù),特別是二次函數(shù)為例來加以更深認識函數(shù)的概念。二次函數(shù)是從一個集合A(定義域)到集合B(值域)上的映射?:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)與集合A的元素X對應(yīng),記為?(x)= ax2+ bx+c(a≠0)這里ax2+bx+c表示對應(yīng)法則,又表示定義域中的元素X在值域中的象,從而使學(xué)生對函數(shù)的概念有一個較明確的認識,在學(xué)生掌握函數(shù)值的記號后,可以讓學(xué)生進一步處理如下問題:
類型I:已知?(x)= 2x2+x+2,求?(x+1)
這里不能把?(x+1)理解為x=x+1時的函數(shù)值,只能理解為自變量為x+1的函數(shù)值。
類型Ⅱ:設(shè)?(x+1)=x2-4x+1,求?(x)
這個問題理解為,已知對應(yīng)法則?下,定義域中的元素x+1的象是x2-4x+1,求定義域中元素X的象,其本質(zhì)是求對應(yīng)法則。
一般有兩種方法:
(1)把所給表達式表示成x+1的多項式。
?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6
(2) 變量代換:它的適應(yīng)性強,對一般函數(shù)都可適用。
令t=x+1,則x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6從而?(x)= x2-6x+6
二、二次函數(shù)的單調(diào)性,最值與圖象。
在高中階階段學(xué)習(xí)單調(diào)性時,必須讓學(xué)生對二次函數(shù)y=ax2+bx+c在區(qū)間(-∞,-b2a ]及[-b2a ,+∞) 上的單調(diào)性的結(jié)論用定義進行嚴格的論證,使它建立在嚴密理論的基礎(chǔ)上,與此同時,進一步充分利用函數(shù)圖象的直觀性,給學(xué)生配以適當?shù)木毩?xí),使學(xué)生逐步自覺地利用圖象學(xué)習(xí)二次函數(shù)有關(guān)的一些函數(shù)單調(diào)性。
類型Ⅲ:畫出下列函數(shù)的圖象,并通過圖象研究其單調(diào)性。
�。�1)y=x2+2|x-1|-1
(2)y=|x2-1|
�。�3)= x2+2|x|-1
這里要使學(xué)生注意這些函數(shù)與二次函數(shù)的差異和聯(lián)系。掌握把含有絕對值記號的函數(shù)用分段函數(shù)去表示,然后畫出其圖象。
類型Ⅳ設(shè)?(x)=x2-2x-1在區(qū)間[t,t+1]上的最小值是g(t)。
求:g(t)并畫出 y=g(t)的圖象
解:?(x)=x2-2x-1=(x-1)2-2,在x=1時取最小值-2
當1∈[t,t+1]即0≤t≤1,g(t)=-2
當t>1時,g(t)=?(t)=t2-2t-1
當t<0時,g(t)=?(t+1)=t2-2
t2-2, (t<0)
g(t)= -2,(0≤t≤1)
t2-2t-1, (t>1)
首先要使學(xué)生弄清楚題意,一般地,一個二次函數(shù)在實數(shù)集合R上或是只有最小值或是只有最大值,但當定義域發(fā)生變化時,取最大或最小值的情況也隨之變化,為了鞏固和熟悉這方面知識,可以再給學(xué)生補充一些練習(xí)。
如:y=3x2-5x+6(-3≤x≤-1),求該函數(shù)的值域。
相關(guān)推薦
高考院校庫(挑大學(xué)·選專業(yè),一步到位�。�
高校分數(shù)線
專業(yè)分數(shù)線
- 日期查詢