2019高考數(shù)學:抓住這六道題,得高分!
2018-12-12 10:37:54我們愛教育
數(shù)學,一直是高考的大頭,而數(shù)學的學習,對于很多同學來說都是大難題!仿佛會做了,但是又不得分,或者得分很少;刷了很多題,也不見得能漲多少分!那到底應(yīng)該怎么辦?今天小編就來給大家分享一些高考中數(shù)學各大題型的得分技巧仔細看看,對你一定有幫助!
概率問題
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2.搞清是什么概率模型,套用哪個公式;
3.記準均值、方差、標準差公式;
4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1);
5.注意計數(shù)時利用列舉、樹圖等基本方法;
6.注意放回抽樣,不放回抽樣;
7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8.注意條件概率公式;
9.注意平均分組、不完全平均分組問題。
圓錐曲線問題
1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2.注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3.戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
導數(shù)、值、不等式恒成立問題
1.先求函數(shù)的定義域,正確求出導數(shù),特別是復合函數(shù)的導數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號);
2.注意最后一問有應(yīng)用前面結(jié)論的意識;
3.注意分論討論的思想;
4.不等式問題有構(gòu)造函數(shù)的意識;
5.恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6.整體思路上保6分,爭10分,想14分。
三角函數(shù)題
注意歸一公式、誘導公式的正確性【轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!】。
數(shù)列題
1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2.最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法,用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
立體幾何題
1.證明線面位置關(guān)系,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。