8個高考數(shù)學專題的答題套路,你一定需要
2019-04-06 22:07:59本站原創(chuàng)
有了模板不代表你一定能拿高分哦,該學的基礎(chǔ)知識還是得需要掌握好的,公式,定理,計算,審題等等一個都不能少!最后3個月,加油!
選擇填空題答題套路
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關(guān)鍵點法、對稱法、小結(jié)論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:
直接法、特殊化法、數(shù)形結(jié)合法、等價轉(zhuǎn)化法。
解答題答題模板
三角變換與三角函數(shù)的性質(zhì)問題
1、解題路線圖
�、俨煌腔�
�、诮祪鐢U角
�、刍痜(x)=Asin(ωx+φ)+h
④結(jié)合性質(zhì)求解。
2、構(gòu)建答題模板
�、倩啠喝呛瘮�(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
�、矍蠼猓豪�ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。
�、芊此迹悍此蓟仡櫍榭搓P(guān)鍵點,易錯點,對結(jié)果進行估算,檢查規(guī)范性。
解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構(gòu)建答題模板
�、俣l件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉(zhuǎn)化的方向。
�、诙üぞ撸杭锤鶕�(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化。
�、矍蠼Y(jié)果。
�、茉俜此迹涸趯嵤┻吔腔セ臅r候應注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進行恒等變形。
數(shù)列的通項、求和問題
1、解題路線圖
�、傧惹竽骋豁�,或者找到數(shù)列的關(guān)系式。
�、谇笸椆�。
�、矍髷�(shù)列和通式。
2、構(gòu)建答題模板
�、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關(guān)系,即找數(shù)列的遞推公式。
�、谇笸棧焊鶕�(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。
�、鄱ǚ椒ǎ焊鶕�(jù)數(shù)列表達式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關(guān)鍵點、易錯點及解題規(guī)范。
利用空間向量求角問題
1、解題路線圖
�、俳⒆鴺讼担⒂米鴺藖肀硎鞠蛄�。
�、诳臻g向量的坐標運算。
③用向量工具求空間的角和距離。
2、構(gòu)建答題模板
�、僬掖怪保赫页�(或作出)具有公共交點的三條兩兩垂直的直線。
�、趯懽鴺耍航⒖臻g直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計算向量的夾角。
�、莸媒Y(jié)論:得到所求兩個平面所成的角或直線和平面所成的角。
圓錐曲線中的范圍問題
1、解題路線圖
�、僭O(shè)方程。
②解系數(shù)。
③得結(jié)論。
2、構(gòu)建答題模板
①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。
�、谡液瘮�(shù):用一個變量表示目標變量,代入不等關(guān)系式。
�、鄣梅秶和ㄟ^求解含目標變量的不等式,得所求參數(shù)的范圍。
�、茉倩仡櫍鹤⒁饽繕俗兞康姆秶茴}中其他因素的制約。
解析幾何中的探索性問題
1、解題路線圖
①一般先假設(shè)這種情況成立(點存在、直線存在、位置關(guān)系存在等)
�、趯⑸厦娴募僭O(shè)代入已知條件求解。
�、鄣贸鼋Y(jié)論。
2、構(gòu)建答題模板
�、傧燃俣ǎ杭僭O(shè)結(jié)論成立。
�、谠偻评恚阂约僭O(shè)結(jié)論成立為條件,進行推理求解。
�、巯陆Y(jié)論:若推出合理結(jié)果,經(jīng)驗證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。
�、茉倩仡櫍翰榭搓P(guān)鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。
離散型隨機變量的均值與方差
1、解題路線圖
�。�1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。
2、構(gòu)建答題模板
①定元:根據(jù)已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
�、鄱ㄐ停捍_定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
函數(shù)的單調(diào)性、極值、最值問題
1、解題路線圖
�。�1)①先對函數(shù)求導;②計算出某一點的斜率;③得出切線方程。
�。�2)①先對函數(shù)求導;②談論導數(shù)的正負性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
2、構(gòu)建答題模板
①求導數(shù):求f(x)的導數(shù)f′(x)。(注意f(x)的定義域)
�、诮夥匠蹋航鈌′(x)=0,得方程的根。
�、哿斜砀瘢豪胒′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。
�、艿媒Y(jié)論:從表格觀察f(x)的單調(diào)性、極值、最值等。
�、菰倩仡櫍簩π栌懻摳拇笮栴}要特殊注意,另外觀察f(x)的間斷點及步驟規(guī)范性。